A Linked Data Representation for Summary Statistics and Grouping Criteria **RPI IDEA/Tetherless World Constellation** James P. McCusker, Michel Dumontier, Shruthi Chari, Joanne S. Luciano, and Deborah L. McGuinness

why not change the world?

Summary statistics across groups can be formalized as linked data using owl:Class-based sets, expressing aggregate values as attributes of those classes.

Class: G(case:TCGA-BRCA) SubClassOf: sio:human and sio:'has role' some (sio:'subject role' and sio:'in relation to' value case:TCGA-BRCA)

Defining Grouping Criteria (starting with Calvanese et al. 2008)

Class: GDC_Subject

1.

OWL

SPARQL

```
EquivalentTo: sio:human
and sio:'has role' some (sio:'subject role'
and sio:'in relation to' some sio:investigation)
```


Defining Grouping Criteria (starting with Calvanese et al. 2008)

$$q\left(\bar{x}, \alpha\left(\bar{y}\right)\right) \leftarrow \phi$$

where

Class: \bar{x} SubClassOf: ϕ

We will reserve $\alpha(\overline{y})$ for later.

Class: \bar{x} SubClassOf: ϕ

$$\bar{x} = G(g_1, \dots, g_n)$$

Class: $G(g_1, \ldots, g_n)$ SubClassOf: ϕ

Class: G(?x)
SubClassOf: sio:human
and sio:'has role' some (sio:'subject role'
and sio:'in relation to' value ?x)


```
select ?GDC Subject ?x where {
  ?GDC Subject a sio:SIO 000485; # human
  sio:SIO 000228 [ # has role
    a sio:SIO 000883; # study subject
    sio:SIO 000668 ?x # in relation to
  ].
  ?x a sio:SIO 000747 # investigation
```

```
Class: G(?x)
SubClassOf: sio:human
and sio:'has role' some (sio:'subject role'
and sio:'in relation to' value ?x)
```


Class: G(case:FM-AD) SubClassOf: sio:human and sio:'has role' some (sio:'subject role' and sio:'in relation to' value case:FM-AD)

Class: G(case:TARGET-NBL) SubClassOf: sio:human and sio:'has role' some (sio:'subject role' and sio:'in relation to' value case:TARGET-NBL)

Class: G(?x) SubClassOf: sio:human and sio:'has role' some (sio:'subject role' and sio:'in relation to' value ?x)

graph = IsomorphicGraph()

owl:Classes with property restriction definitions can be assigned URIs automatically based on the graph digest of that property restriction using RGDA1 or similar graph digest algorithms.

graph = source_graph.query("""
describe ?restr where {
 ?G owl:equivalentClass|rdfs:subClassOf ?restr.
}""", initBindings={"G":my.Class})

digest = graph.graph_digest()

source_graph.add((
 my.Class,
 owl:equivalentClass,
 digest_prefix[digest]

WARNING! We will be discussing the use of OWL 2 puns.

TL;DR for **OWL 2 Punning**:

Statements asserted about a resource as an OWL Class **cannot be used to draw inferences** about the resource as an OWL Individual or vice-versa.

Expressing aggregate values relies on the Semanticscience Integated Ontology, or an expressive equivalent.

First, if needed we reify non-SIO statements as attributes.

 $\forall G, \alpha(\bar{y}) \exists A \in \alpha, Y \in \bar{y}$ $attr(G, Y) \land attr(Y, A) \land val(A, \alpha(\bar{y}))$

Finally, here's what we do with $\alpha(\bar{y})$.

Class: G(case:TCGA-BRCA) SubClassOf: sio:human and sio:'has role' some (sio:'subject role' and sio:'in relation to' value case:TCGA-BRCA)

Here's what it looks like in practice.

- We can query summary statistics from an RDF graph and put the results into it's own graph.
- We query the statistics out and display them using Vega-Lite.

Many thanks to:

Coauthors: Deborah, Michel, Joanne, and Shruthi Others whom I've bothered about this: John Erickson, Patrice Seyed, and James Michaelis.

why not change the world?®