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Summary  statistics  
across groups can be 
formalized as linked data 
using owl:Class-based sets, 
expressing aggregate values 
as attributes of those 
classes.

Class: G(case:TCGA-BRCA) 
SubClassOf: sio:human and 

sio:'has role' some (sio:'subject role’ 
and sio:'in relation to' value case:TCGA-BRCA)

G(case:TCGA-BRCA) has attribute counta

1098has value

agea

1098has value

mean a

1098 has value

has attribute

maximal value a

32872 has value

minimal value a

2009 has value

has unit day
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Example Data Schema – Genomic Data Commons Clinical Annotations
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Defining Grouping Criteria (starting with Calvanese et al. 2008)

OWL

SPARQL

4 J. McCusker et al.

tively introduce variables into OWL class definitions. A conventional OWL class
contains references to classes, properties, individuals, and literals:5

Class: GDC_Subject
EquivalentTo: sio:human
and sio:'has role' some (sio:'subject role'

and sio:'in relation to' some sio:investigation)

This can be expressed as this SPARQL query:

select ?GDC_Subject WHERE {
?GDC_Subject a sio:SIO_000485; # human
sio:SIO_000228 [ # has role

a sio:SIO_000883; # study subject
sio:SIO_000668 [ # in relation to
a sio:SIO_000747 # investigation

]
].

}

When this class is applied to the sample data in Supplemental Materials it
results in 33,549 matches, one for each human:

GDC Subject ◆

8
<

:

case:d4f90900-3b81-4015-8e11-4b4525345063
case:d52a195d-7d63-4eb6-81c2-3c473ba57979

. . .

9
=

;

An aggregate query in Calvanese et al. is expressed as:

q (x̄,↵ (ȳ)) �

where x̄ is a sequence of grouping variables, ↵ (ȳ) is the aggregation term, and
� is the query condition expressed in first order logic. We translate this into
manchester notation through the following template:

Class: x̄

SubClassOf: �

We will introduce ȳ in Section 5, as Calvanese et al. do not provide a way to
represent ȳ in a knowledge graph. In order to more explicitly treat their uses of
variables, we define a function G (g1, . . . , gn) = x̄:

5 The following prefixes are used in all SPARQL, Manchester notation, and Turtle
examples:
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
sio: http://semanticscience.org/resource/
prov: http://www.w3.org/ns/prov#
case: http://example.com/gdc/case/
project: http://example.com/gdc/project/
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Defining Grouping Criteria (starting with Calvanese et al. 2008)
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Grouping Criteria as OWL Templates

4 J. McCusker et al.
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Class: G ( g1, . . . , gn)
SubClassOf: �

An aggregate query of study subjects by investigation can now be expressed as:

Class: G(?x)
SubClassOf: sio:human
and sio:'has role' some (sio:'subject role'

and sio:'in relation to' value ?x)

The selection SPARQL query would look like this:

select ?GDC_Subject ?x WHERE {
?GDC_Subject a sio:SIO_000485; # human
sio:SIO_000228 [ # has role

a sio:SIO_000883; # study subject
sio:SIO_000668 ?x # in relation to

].
?x a sio:SIO_000747 # investigation

}

A class is defined for every matched value in the knowledge base:

Class: G(case:FM-AD)
EquivalentTo: sio:human
and sio:'has role' some (sio:'subject role'

and sio:'in relation to' value case:FM-AD)

Class: G(case:TARGET-NBL)
EquivalentTo: sio:human
and sio:'has role' some (sio:'subject role'

and sio:'in relation to' value case:TARGET-NBL)

...

The members of each grouping criterion G (g1, . . . , gn) are therefore members
of the generated class G(), and the RDF graph that describes these summary
statistics can provide rdf:type statements for each member as provenance. There
are 45 di↵erent investigations in GDC total, above we show the three with the
most subjects. These variables can replace classes, properties, and individuals,
and can be mixed in with non-variable criteria, as was shown in the above
example. Calvanese et al. discuss the computation of the aggregate operations
MIN, MAX, COUNT DISTINCT, SUM, and AVG (mean), but do not specify
how the values relate to the computed classes. The following sections relate the
work done by Calvanese et al. to a complete representation of both the grouping
criteria and aggregate statistics in RDF. This includes methods for computable
URIs for the grouping criteria classes G(), how to provide aggregate statistics
on all G() using sio:‘has attribute’, and how to link those aggregate statistics to
their source graphs.
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"̅ = $(&!, … , &")
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Grouping Criteria as a SPARQL query

J. McCusker et al. 5

Class: G ( g1, . . . , gn)
SubClassOf: �

An aggregate query of study subjects by investigation can now be expressed as:

Class: G(?x)
SubClassOf: sio:human
and sio:'has role' some (sio:'subject role'

and sio:'in relation to' value ?x)

The selection SPARQL query would look like this:

select ?GDC_Subject ?x WHERE {
?GDC_Subject a sio:SIO_000485; # human
sio:SIO_000228 [ # has role

a sio:SIO_000883; # study subject
sio:SIO_000668 ?x # in relation to

].
?x a sio:SIO_000747 # investigation

}

A class is defined for every matched value in the knowledge base:

Class: G(case:FM-AD)
EquivalentTo: sio:human
and sio:'has role' some (sio:'subject role'

and sio:'in relation to' value case:FM-AD)

Class: G(case:TARGET-NBL)
EquivalentTo: sio:human
and sio:'has role' some (sio:'subject role'

and sio:'in relation to' value case:TARGET-NBL)

...

The members of each grouping criterion G (g1, . . . , gn) are therefore members
of the generated class G(), and the RDF graph that describes these summary
statistics can provide rdf:type statements for each member as provenance. There
are 45 di↵erent investigations in GDC total, above we show the three with the
most subjects. These variables can replace classes, properties, and individuals,
and can be mixed in with non-variable criteria, as was shown in the above
example. Calvanese et al. discuss the computation of the aggregate operations
MIN, MAX, COUNT DISTINCT, SUM, and AVG (mean), but do not specify
how the values relate to the computed classes. The following sections relate the
work done by Calvanese et al. to a complete representation of both the grouping
criteria and aggregate statistics in RDF. This includes methods for computable
URIs for the grouping criteria classes G(), how to provide aggregate statistics
on all G() using sio:‘has attribute’, and how to link those aggregate statistics to
their source graphs.

select ?GDC_Subject ?x where {
?GDC_Subject a sio:SIO_000485; # human 
sio:SIO_000228 [ # has role 

a sio:SIO_000883; # study subject 
sio:SIO_000668 ?x # in relation to 

]. 
?x a sio:SIO_000747 # investigation 

} 



10/28/19
8A Linked Data Representation for Summary Statistics and Grouping Criteria

Grouped Criteria as expanded classes

J. McCusker et al. 5
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An aggregate query of study subjects by investigation can now be expressed as:
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The members of each grouping criterion G (g1, . . . , gn) are therefore members
of the generated class G(), and the RDF graph that describes these summary
statistics can provide rdf:type statements for each member as provenance. There
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most subjects. These variables can replace classes, properties, and individuals,
and can be mixed in with non-variable criteria, as was shown in the above
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Class: G(case:FM-AD) 

SubClassOf: sio:human

and sio:'has role' some (sio:'subject role’ 

and sio:'in relation to' value case:FM-AD) 

Class: G(case:TARGET-NBL) 

SubClassOf: sio:human and 

sio:'has role' some (sio:'subject role’ 

and sio:'in relation to' value case:TARGET-NBL)

... 
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owl:Classes with property 
restriction definitions can 
be assigned URIs 
automatically based on 
the graph digest of that 
property restriction using 
RGDA1 or similar graph 
digest algorithms.

graph = IsomorphicGraph()

graph = source_graph.query(”””
describe ?restr where {

?G owl:equivalentClass|rdfs:subClassOf ?restr.
}”””, initBindings={“G”:my.Class} )

digest = graph.graph_digest()

source_graph.add((
my.Class, 
owl:equivalentClass, 
digest_prefix[digest]

))
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WARNING! We will be discussing the 
use of OWL 2 puns.



10/28/19
11A Linked Data Representation for Summary Statistics and Grouping Criteria

TL;DR for OWL 2 Punning:

Statements asserted about a 
resource as an OWL Class cannot 
be used to draw inferences about 
the resource as an OWL Individual or 
vice-versa.
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Expressing aggregate 
values relies on the 
Semanticscience
Integated Ontology, or 
an expressive 
equivalent.

quality
measurement 

value

object

process

capability
role

entity entity

time 
measurement

information 
content entity

Space

Time

Information

literal

has attribute

is realized in

is participant in
has attribute

has attribute

has part

has part

is located in
  is contained in
  is part of

exists at
  measured at

has attribute

has value
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First, if needed we reify 
non-SIO statements as 
attributes.

litps
s has attribute

p

a

lit has value

s p res

s has attribute

pres
a
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Finally, here’s what we 
do with       .

J. McCusker et al. 7

We can now determine a way to represent the aggregation term ↵ (ȳ). This is
expressed in RDF where ȳ is an attribute of G(g1, . . . , gn), and each ↵ (ȳ) is the
attribute of type ↵:

8G,↵(ȳ)9A 2 ↵, Y 2 ȳattr (G, Y ) ^ attr (Y,A) ^ val (A,↵(ȳ))

Following the data in the Supplemental Materials, when G(case:TCGA-BRCA)
is defined as an aggregate as expressed above:

Class: G(case:TCGA-BRCA)
SubClassOf: sio:human
and sio:'has role' some (sio:'subject role'

and sio:'in relation to' value case:TCGA-BRCA)

the aggregate facts can then be asserted about G(case:TCGA-BRCA) in this
way:

G(case:TCGA-BRCA) sio:has-attribute
[ a sio:count; sio:'has value' 1098 ],
[ a sio:age;

sio:'has attribute'
[ a sio:mean; sio:'has value' 21582 ],
[ a sio:'maximal value'; sio:'has value' 2009 ];
[ a sio:'minimal value'; sio:'has value' 32872 ],

].

By providing formal representations for aggregations, it becomes possible to
formally define them using grouping criteria. Additional facts can be provided
about each set through aggregate functions, which can be extended with more
sophisticated statistical functions. Since each aggregation becomes a defined and
denoted thing, it becomes possible to provide the provenance of those definitions,
which would include the members of the class and aggregate query used to define
it. These classes and facts about these classes can now be defined automatically
using grouping functions and instances. Because of this, OLAP-like tools can
use and generate assertions about the aggregate sets that they produce through
user interaction, since OLAP relies on GROUP BY, filtering criteria, and ag-
gregation functions. These classes can then be subjected to statistical analysis
and the definitions can be re-applied to further datasets for hypothesis testing
or published as nanopublications.

6 Closing Graphs Over Aggregates

Aggregation techniques face a number of challenges when dealing with the open
world assumption. First, aggregation functions assume that the available data
is complete and whole. For instance, asserting that a class has ten instances is
implicitly means that ten known instances have been counted, but that number
could be higher (because of unknown instances). Additionally, because of the

G has attribute Y a

Aa

has value

has attribute
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Here’s what it looks like 
in practice.

Class: G(case:TCGA-BRCA) 
SubClassOf: sio:human and 

sio:'has role' some (sio:'subject role’ 
and sio:'in relation to' value case:TCGA-BRCA)

G(case:TCGA-BRCA) has attribute counta

1098has value

agea

1098has value

mean a

1098 has value

has attribute

maximal value a

32872 has value

minimal value a

2009 has value

has unit day
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Implementation in Jupyter Notebook

§ We can query summary statistics 
from an RDF graph and put the 
results into it’s own graph.

§ We query the statistics out and 
display them using Vega-Lite.

10 J. McCusker et al.

0 1,000 2,000 3,000 4,0005,000
# of cases

Adenocarcinoma

Carcinoma

Squamous Cell Carcinoma

Ductal Breast Carcinoma

Endometrioid Adenocarcinoma

Glioblastoma

Serous Cystadenocarcinoma

Gastric Papillary Adenocarcinoma

Melanoma

Non-Small Cell Carcinoma

Diffuse Large B-Cell Lymphoma

Acinar Cell Carcinoma

Neuroendocrine Carcinoma

Small Cell Carcinoma

Papillary Carcinoma

Mucinous Adenocarcinoma

Thymoma

Adult Cholangiocarcinoma

Cervical Adenocarcinoma

Acute Myeloid Leukemia Not Otherwis…

D
ia

gn
os

is
Fig. 2. The top 20 diagnoses for cancer in the GDC, retrieved from summary semantics.
This figure was generated from the aggregate statistics encoded in age by diagnosis.ttl,
and is reusable for viewing similar aggregations.

and the DL-based definitions of each class are used to compute a URI for
each G(). The generated G(g1, . . . , gn) classes are themselves in ALE . SIO is
in SRIQ(D). Additionally, were able to use Pellet to perform a full inference of
the age by diagnosis.ttl with SIO without any inconsistencies or errors.

8.2 Overhead

The storage overhead of our knowledge representation is fairly limited. For in-
stance, in our GDC dataset, expressing age by diagnosis for the entire dataset
required 4,992 statements using 304 classes, requiring about 16 statements (with
RDFS labels mixed in) per class. When using multiple grouping criteria, the
number of expressed classes will expand geometrically based on the number of
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