

Statistical Challenges Towards a Semantic Model for Precision Agriculture and Precision Livestock Farming

Dimitris Zeginis, Evangelos Kalampokis, Konstantinos Tarabanis

SemStats 2019

The CYBELE project

- Agriculture is a high volume, huge business with low operational efficiency
- Precision Agriculture and Livestock Farming use intensive data collection and processing to drive operational decisions
 - Drones patrol fields and alert farmers for crop ripeness or potential problems
 - Sensors on fields provide granular data points on soil conditions
 - GPS units on tractors can help determine optimal usage of heavy equipment
 - Satellite images can help computing useful field overview indicators e.g. Normalized Difference Vegetation Index
- The CYBELE project aims at demonstrating how Precision Agriculture and Livestock Farming can revolutionise the agrifood sector using the power of high performance computing

Farming data

- Farming data come from diverse heterogeneous sources
- Structured data
 - Sensor data e.g. measure the soil's electrical conductivity at a specific location and time
 - Forecasts e.g. for weather, prices, production
- Unstructured data
 - Earth observations e.g. satellite/drone images
 - Video e.g. video data from pig pens to monitor pigs behaviour
 - Maps can be combined with other data to provide easily interpretable results
- Data lakes are required to store farming data

Uniform access to data lakes

Role of the Semantic Model

- Represent domain knowledge related to the content of a data lake e.g. agriculture, farming, weather
- The semantic model can express:
 - Metadata:

V1 of the model

- Structural e.g. dimensions, measures
- non-structural e.g. publisher, issuing date, license
- Data:
 - values of dimensions e.g. geo dimension → Greece, New Zealand
- Enables the uniform access of heterogeneous data
 - Facilitate data discovery → require metadata
 - Facilitate data querying → require data and metadata
 - Facilitate data integration → require data and metadata

Semantic model development

- The methodology followed comprises the steps:
 - Study the scope of the model and the relevant data
 - Identify the user roles regarding data exploitation and their requirements
 - Extract the main concepts of the model from the requirements
 - Define the model by matching the concepts to existing standards and vocabularies

Scope of the Semantic Model

- The semantic model focuses on the agri-food domain
 - Agriculture data e.g. protein content, soil electrical conductivity
 - Livestock farming data e.g. animal weight, livestock feed
 - Fishing data e.g. fish behavior data, landing data of fish stocks
 - Aquaculture data e.g. water temperature, current speed
 - Climate and weather data e.g. temperature, humidity
 - Satellite & aerial image data

User roles

- End user (e.g. farmer and livestock manager)
 - exploit big data applications that produce easy to consume and interpret visualizations
- Modeler and developer
 - produce big data application &models for the end users
- Data analyst and farming consultant
 - exploit data-driven decision making to support end users
- Statistician
 - exploit big agricultural and livestock farming data to deliver official statistics

Semantic Model User Requirements

Search for datasets:

- Regarding a specific cultivation e.g. soya, grapes
- Created as a result of an activity e.g. sensoring, forecasting
- That are updated e.g. monthly, daily, nearly real-time
- Published/created/owned by a specific organization
- Issued/modified after/before a specific point in time
- That have a specific dimension e.g. geo, time
- That have a specific measure e.g. NDVI
- That have a specific unit of measure e.g. prices in euro
- That have specific temporal coverage e.g. [2017- 2019]
- Distributed in a specific format e.g. CSV, XML, JSON
- Distributed under a specific license e.g. Creative Commons

Vocabularies used

- DCAT
 - describe datasets metadata
- Stat-DCAT
 - describe datasets statistical metadata
- PROV-O
 - describe provenance information
- QB vocabulary
 - describe statistical data and metadata

The model

Statistical challenges

- Aggregated data are needed to support decision making
 - Sensors produce measurements regularly e.g. every 1 minute
 - Aggregated data are needed e.g. at day level
- Unstructured data need to be processed to calculate indexes
 - Satellites produce multispectral images
 - Indicators are needed e.g. Normalized Difference Vegetation Index (NDVI)
- Join of different datasets is required
 - Dataset 1: NDVI calculated from satellite images
 - Dataset 2: soil compression calculated from sensors at field
 - The join can use as an ID the field location

Towards v2 of the model

Requirements:

- Requirement 1: query data
 - I want data of area X for the time [2018 2019] that measure the NDVI
 - Result: set of observations from one dataset
- Requirement 2: integrate data
 - I want data of area X for the time [2018 2019] that measure the NDVI AND the soil compression
 - Join observations from two datasets

Next steps:

- Define ontologies and code lists for:
 - Structural metadata: dimensions, measures, units
 - No-structural metadata: data format, theme, language, frequency update
 - Data values: time values, geo values, ...

Thank you

https://www.cybele-project.eu