Statistical Challenges Towards a Semantic Model for Precision Agriculture and Precision Livestock Farming

Dimitris Zeginis, Evangelos Kalampokis, Konstantinos Tarabanis

SemStats 2019
The CYBELE project

• Agriculture is a high volume, huge business with low operational efficiency

• Precision Agriculture and Livestock Farming use **intensive data collection and processing** to drive operational decisions
 - Drones patrol fields and alert farmers for crop ripeness or potential problems
 - Sensors on fields provide granular data points on soil conditions
 - GPS units on tractors can help determine optimal usage of heavy equipment
 - Satellite images can help computing useful field overview indicators e.g. Normalized Difference Vegetation Index

• The CYBELE project aims at demonstrating how Precision Agriculture and Livestock Farming can revolutionise the agrifood sector using the power of high performance computing
Farming data

- Farming data come from diverse heterogeneous sources
- Structured data
 - Sensor data e.g. measure the soil's electrical conductivity at a specific location and time
 - Forecasts e.g. for weather, prices, production
- Unstructured data
 - Earth observations e.g. satellite/drone images
 - Video e.g. video data from pig pens to monitor pigs behaviour
 - Maps can be combined with other data to provide easily interpretable results
- Data lakes are required to store farming data
Uniform access to data lakes
Role of the Semantic Model

• Represent domain knowledge related to the content of a data lake e.g. agriculture, farming, weather

• The semantic model can express:
 - Metadata:
 • Structural e.g. dimensions, measures
 • non-structural e.g. publisher, issuing date, license
 - Data:
 • values of dimensions e.g. geo dimension → Greece, New Zealand

• Enables the uniform access of heterogeneous data
 - Facilitate data **discovery** → require metadata
 - Facilitate data **querying** → require data and metadata
 - Facilitate data **integration** → require data and metadata
Semantic model development

• The methodology followed comprises the steps:
 ▪ Study the scope of the model and the relevant data
 ▪ Identify the user roles regarding data exploitation and their requirements
 ▪ Extract the main concepts of the model from the requirements
 ▪ Define the model by matching the concepts to existing standards and vocabularies
Scope of the Semantic Model

• The semantic model focuses on the agri-food domain
 ▪ Agriculture data e.g. protein content, soil electrical conductivity
 ▪ Livestock farming data e.g. animal weight, livestock feed
 ▪ Fishing data e.g. fish behavior data, landing data of fish stocks
 ▪ Aquaculture data e.g. water temperature, current speed
 ▪ Climate and weather data e.g. temperature, humidity
 ▪ Satellite & aerial image data
User roles

• End user (e.g. farmer and livestock manager)
 ▪ exploit big data applications that produce easy to consume and interpret visualizations

• Modeler and developer
 ▪ produce big data application & models for the end users

• Data analyst and farming consultant
 ▪ exploit data-driven decision making to support end users

• Statistician
 ▪ exploit big agricultural and livestock farming data to deliver official statistics
Semantic Model User Requirements

• Search for datasets:
 - Regarding a specific cultivation e.g. soya, grapes
 - Created as a result of an activity e.g. sensoring, forecasting
 - That are updated e.g. monthly, daily, nearly real-time
 - Published/created/owned by a specific organization
 - Issued/modified after/before a specific point in time
 - That have a specific dimension e.g. geo, time
 - That have a specific measure e.g. NDVI
 - That have a specific unit of measure e.g. prices in euro
 - That have specific temporal coverage e.g. [2017- 2019]
 - Distributed in a specific format e.g. CSV, XML, JSON
 - Distributed under a specific license e.g. Creative Commons
Vocabularies used

- **DCAT**
 - describe datasets metadata

- **Stat-DCAT**
 - describe datasets statistical metadata

- **PROV-O**
 - describe provenance information

- **QB vocabulary**
 - describe statistical data and metadata
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 825355.
Statistical challenges

• Aggregated data are needed to support decision making
 ▪ Sensors produce measurements regularly e.g. every 1 minute
 ▪ Aggregated data are needed e.g. at day level

• Unstructured data need to be processed to calculate indexes
 ▪ Satellites produce multispectral images
 ▪ Indicators are needed e.g. Normalized Difference Vegetation Index (NDVI)

• Join of different datasets is required
 ▪ Dataset 1: NDVI calculated from satellite images
 ▪ Dataset 2: soil compression calculated from sensors at field
 ▪ The join can use as an ID the field location
Towards v2 of the model

Requirements:

• Requirement 1: query data
 § I want data of area X for the time [2018 - 2019] that measure the NDVI
 § Result: set of observations from one dataset

• Requirement 2: integrate data
 § I want data of area X for the time [2018 - 2019] that measure the NDVI AND the soil compression
 § Join observations from two datasets

Next steps:

• Define ontologies and code lists for:
 § Structural metadata: dimensions, measures, units
 § No-structural metadata: data format, theme, language, frequency update
 § Data values: time values, geo values, ...
Thank you

https://www.cybele-project.eu