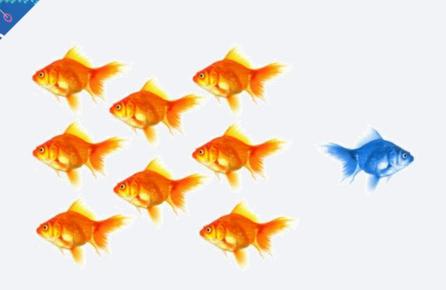
Use of Knowledge Graphs and Relational Machine Learning

Frederic Clarke, Director MINDS Australian Bureau of Statistics

Australian Bureau of Statistics Informing Australia's important decisions

Machine Intelligence and Novel Data Sources



Multi-disciplinary team – maths, CS, KM

- Focus on hard problems, learn by doing
- Demonstrate solutions through prototypes

Investigate, experiment, evaluate and inform

- Methods, technologies and models
- New data sources and applications
- ABS strategic capabilities and priorities
- Environmental trends, opportunities, threats

Agenda

The strategic context

A motivating example

ABS use of KL and RL

GLIDE and current work

ABS Mission

Inform Australia's important decisions

- Producing new and relevant statistical insights
- Enabling effective and safe use of data
- Building national information capability for the future

On public policy, services and investment

Disruptive change

Driven by powerful global megatrends

- Intelligent Machines
- Digital Connectedness
- Data-driven World

Impact on government is profound

- Overturns extant business models
- Challenges traditional decision-making processes

Lee Sedol and AlphaGo Zero

Complex systems

Most economic, social and environmental systems are complex

- Many interacting entities of different types
- Dynamic and non-linear relationships
- Emergent system structure and behaviour

Connectedness is an essential condition for complexity

Complex systems underlie most 'wicked' problems

Big data

Personal Devices

Diverse new sources of human-generated and machine-generated data

Imagery Systems

Can be used for statistical purposes

Smart Meters

Product Scanners Create new statistical products that fill information gaps

Environmental Monitors Issues: heterogeneity, bias and dimensionality

Telematics Devices ABS operates in an increasingly congested and contested environment

Web

Applications

Social Media

Services

Logistics

Systems

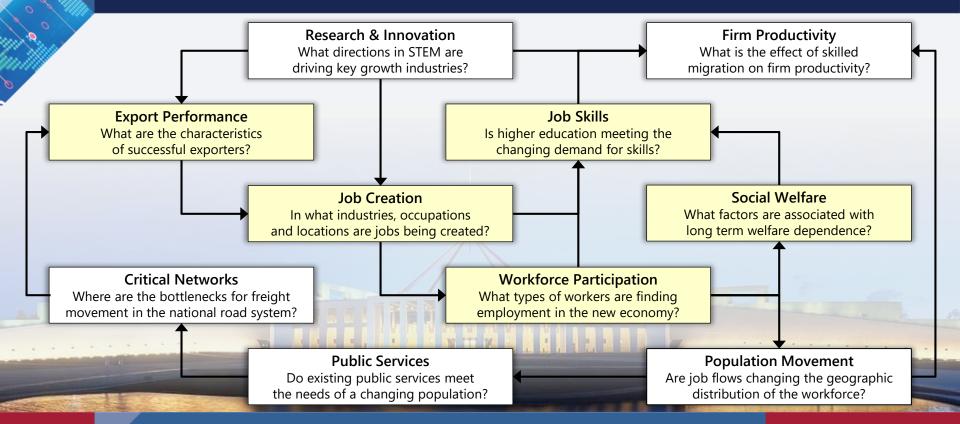
Accounting

Systems

Administrative

Collections

Connectedness of policy concerns



Next generation analytical capability

Built on system-centric information models

- Composable, interpretable and semantically precise
- Join up interrelated concept and data spaces
- Connect individuals and groups in multiple ways

Dynamically integrates heterogeneous multisource data

- Structured and unstructured
- Cross-sectional and longitudinal temporal linkages

Next generation analytical capability

Enables multiple analytical perspectives and objectives

- Exploration (pattern sensing) finding statistical features and correlations
- Explanation (model building) testing hypotheses about the observed data
- Extrapolation (system simulation) projecting beyond known cases

Knowledge graphs

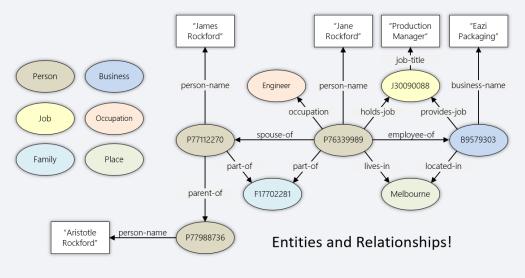
System is depicted as a graph of entities and relationships

- Entity individual thing or group of things
- Relationship association between entities
- Entities interact through relationships of analytical interest

Use W3C Semantic Web formalism for knowledge graphs

- Graph composition (standard: RDF)
- Semantic modelling (standard: OWL)
- Knowledge discovery (standard: SPARQL)

Knowledge graphs – simple example



Analytical domains

Systems are partitioned the into context-specific analytical domains

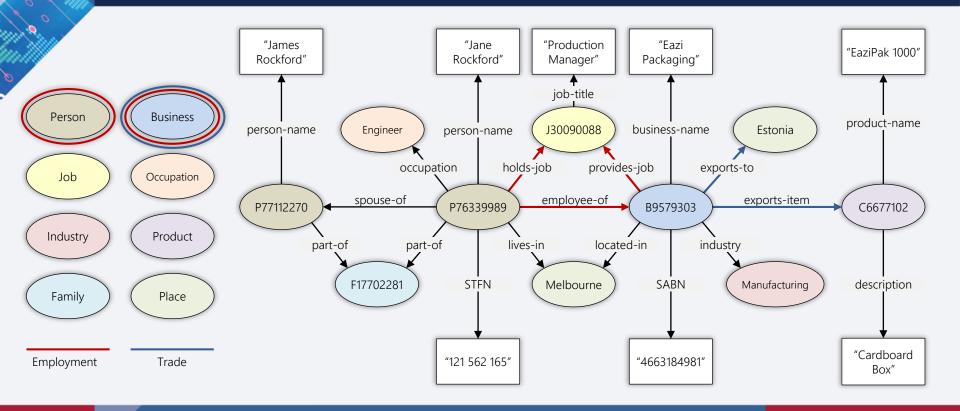
• Example: Trade, Employment, Production, Education, Welfare, etc.

Each domain has set of associated entity types and relationships

- Basic entity types can exist in multiple domains
- Relationships are usually context-specific and so bound to one domain

Domains are connected through common entity types

Analytical domains – simple example



Units and observations

Observable characteristics of an entity can change over time

Example: person name, address, marital status, and employment details

Entities are associated with their respective observations in data

- Real world thing is represented by a unit entity (spine entity)
- Specific observations of a unit are represented by observation entities
- Observations are associated equivalence relationships
- Temporal segmentation is demarcated by event entities

Example: observations of the same person in different data sets

- Record-3 is much later that Record-1 and Record-2
- Significant events: Change of Residence, Marriage, Graduation

Record-1

Family Name	Given Name	Address	DOB	Country of Birth	Sex	Marital Status	Occupation	STFN	10 02 2005
Smith	Jane	1 Long Street Broadford VIC	05-08-1985	Australia	F	Single	Student		10-02-2005

Record-2

Family Name	Given Name	Address	DOB	Country of Birth	Sex	Marital Status	Occupation	STFN
Smyth	Jane	1 Long Street Broadford VIC	05-08-1985		F	Single	Student	121 562 165

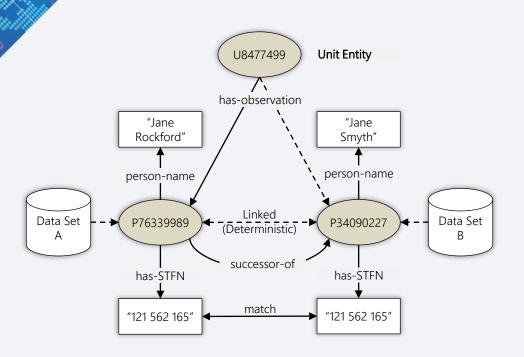
17-05-2005

Observation date

Record-3

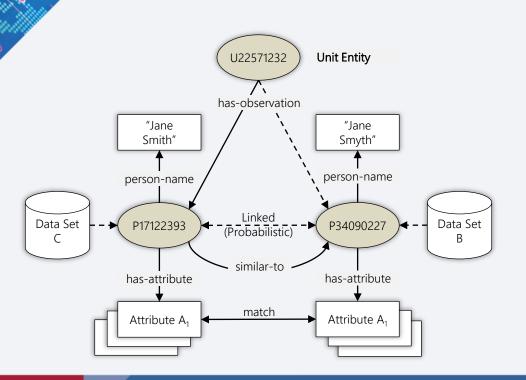
Family Name	Given Name	Address	DOB	Country of Birth	Sex	Marital Status	Occupation	STFN
Rockford	Jane	32 King Street Lalor VIC	05-08-1985	Australia	F	Married	Engineer	121 562 165

15-07-2015



Deterministic association

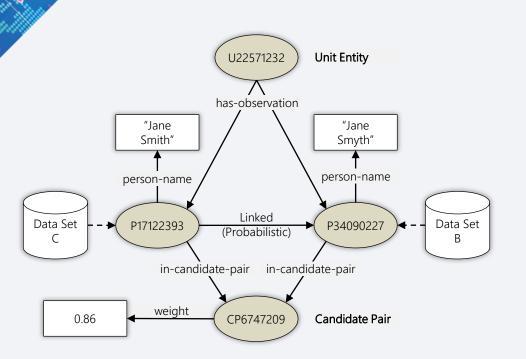
- Current: identifier match using common unique key
- Future: fact match using deductive rules (FOL)
- Multiple class inheritance



Probabilistic association

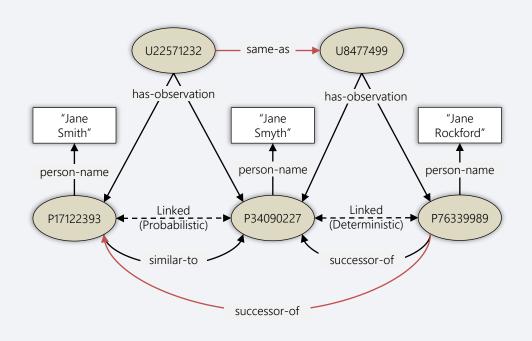
- Current: similarity match on entity characteristics using Sunter-Fellegi model
- future: similarity match on entity characteristics evaluation or relational characteristics using machine learning
- Multiple class inheritance

Representing weights/probabilities



Accommodates SF pairwise linking

- Candidate pairs with associated weights
- An observation can be liked to more than one CP
- Much better represented in a property graph construct
- Can we combine the two paradigms?



23

Combining data

Extract entities and relationships from source data

Automatically by content analysis (fact extraction) tools

Create the knowledge graph in SW form

Asserted facts from source data

Associate observation entities in the graph

Inferred facts from reasoning processes

Relational learning

Based on pattern of connections among entities

Extend scope of probabilistic linking beyond IID assumption

Associate entities across time and in disparate data sources

- Needed when there are no reliable common identifiers
- Example: persons by family and household relationships

Detect events that involve changes in the structure of groups

Example: business reorganisation, closure, takeover

Detecting change over time

RL approaches

Graph kernel learning

- Represent the structural form of a graph for use in kernel learning algorithms
- Kernels: Weisfeiler-Lehman (WL), Intersection Tree Path (ITP)

Tensor factorisation

- Manipulates 3-order adjacency tensor of the knowledge graph
- Estimate probability distribution over possible states of graph
- Algorithms: RESCAL, Complex Embedding, HOLE, TransE

GLIDE

Capability vision for enabling informed decision making

About policy, services, investment and (possibly) regulation

Based on insights derived from different types of analysis

Exploratory analysis, hypothesis testing, system simulation

Using a dynamic evidence base from diverse data sources

Surveys, admin collections, sensors, transactions, web content, ...

Graph-Linked Information Discovery Environment

What GLIDE will provide

One platform for data analysis and linking

- Browser interface rich, interactive, navigable, context-sensitive visualisation
- Program interface (R, Python) statistical and econometric modelling
- Spatial, temporal and compositional perspectives of problem
- Deterministic and probabilistic linkage methods common key, Sunter-Fellegi
- Extraction of entities and facts from heterogeneous data
- Reusable, plug-and-play models and components

Graph-Linked Information Discovery Environment

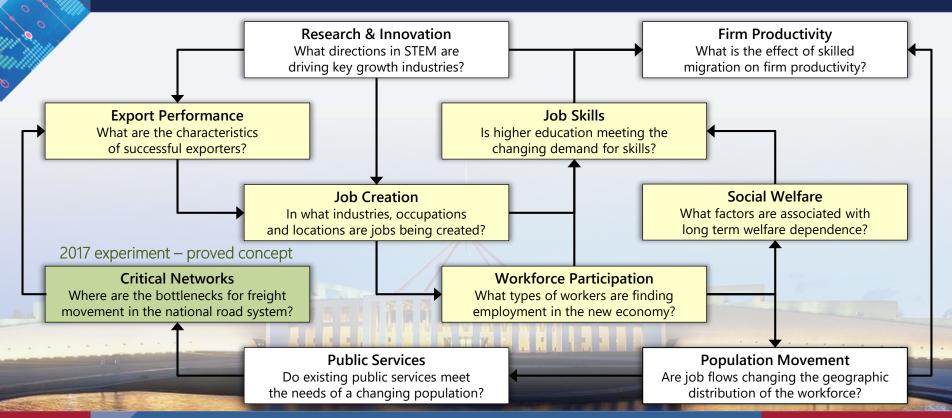
What GLIDE will provide

A set of extensible, interoperable 'data pools'

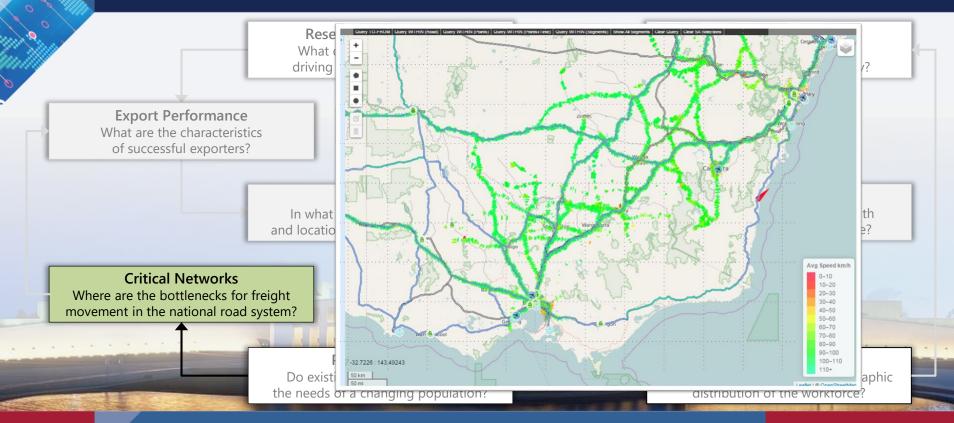
- Multiple structured or unstructured data sets
- Longitudinally linked data (given social license)
- Different entity and relationship types in the form of a knowledge graph

Graph-Linked Information Discovery Environment

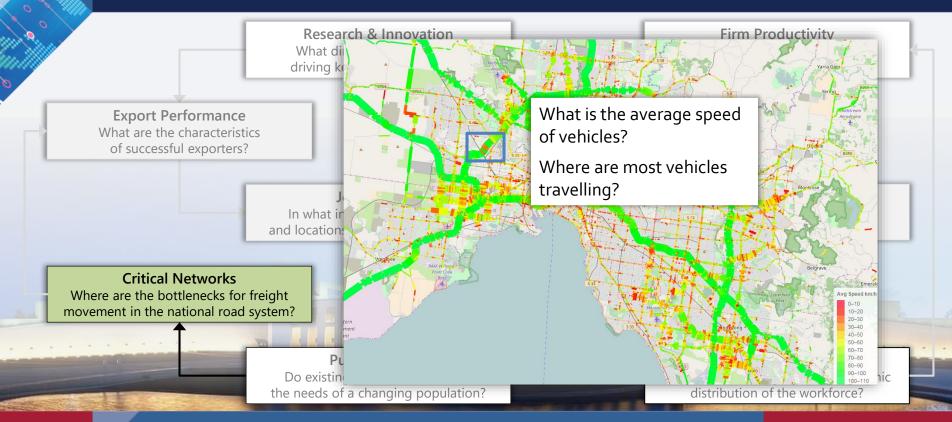
Pathway initiatives



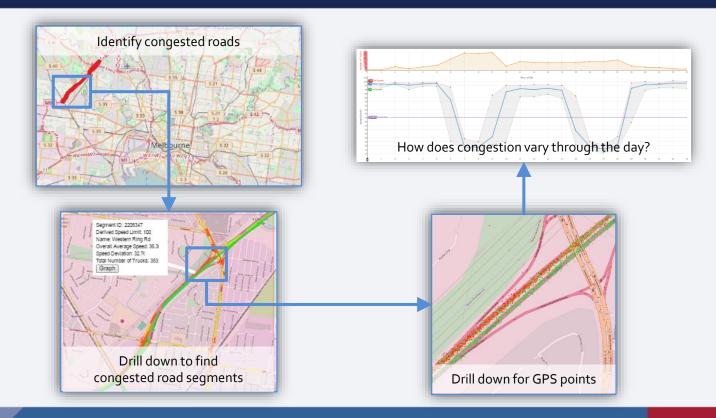
Pathway initiatives – freight movement



Pathway initiatives – freight movement



Freight movement – drilling down



Pathway initiatives – successful exporters

Research & Innovation

What direct driving key

Firm Productivity

Export Performance

What are the characteristics of successful exporters?

Full extract BAS and BCS data

- 7 million businesses per year
- Complex relationships

Monthly export transactions data

• 800,000+ records per month

BLADE data

- Business Characteristics Survey (BCS)
- Business Activity Statements (BAS)

Merchandise export records

- Held by Department of Home Affairs (DHA)
- Lodged by exporters and agents via (CCF)

ABS business unit model (LE, EG, TAU)

Classifications (AHECC, SITC, ANZSIC, SISCA, AGSO, ...)

Pub
Do existing
the needs of a

the needs of a changing population

distribution of the workforce:

