Towards Easy Matching Between Statistical Linked Data: Dimension Patterns

Hideto Sato and Wen Wen

First International Workshop on Semantic Statistics
(SemStats 2013)
22 October 2013, Sydney
Introduction

- For matching statistical data from **different sources**, **upper concepts** and **schema-level links** are important.

- **Three Problems**
 1. A small number of upper concepts are available.
 2. Certain patterns of dimension description prevent some schema-level links.
 3. Usage of **external codes** is hard to find in a schema-level.

- This paper focuses on (2) and (3), and propose **patterns of dimension description** to improve them.
Trial Matching

• Italian Immigration Statistics
 ⇒ the numbers of immigrants to Italy by birth country by year

• World Bank Statistics
 ⇒ the total population by country by year

• Integrated Statistics
 Percentage of Immigrants to Italy by country by year
(1) What role does the dimension play?

- place of residence
- place of birth
(2) What type of code does the dimension use?
- Countries
- Domestic Administrative Areas
- River Basins, and so on.
(3) What common codes are available?

- Geonames
- DBPedia

preferably in the schema-level
Matching Data from Different Sources

The following questions are important for each dimension. As for an area dimension,

For Dimension Properties
What role does the dimension play?
- Place of Birth
- Place of Residence

For Code Class (Range of Dimension)
What type of code does the dimension use?
- Countries
- Domestic Administrative Areas
- River Basins

For Code Values
What common codes are available?
- Geonames
- DBPedia
Matching Data from Different Sources

The following questions are important for each dimension. As for an area dimension:

For Dimension Properties
- What role does the dimension play?
 - Place of Birth
 - Place of Residence

For Code Class (Range of Dimension)
- What type of code does the dimension use?
 - Countries
 - Domestic Administrative Areas

For Code Values
- What common codes are available?
 - Geonames
 - DBPedia

2013/10/22
QB and Upper Concepts

QB: The RDF Data Cube Vocabulary

QB provides a bridge to upper concepts by referring to the SDMX-RDF vocabulary.
Upper Concepts and SDMX-RDF

<table>
<thead>
<tr>
<th>Upper concept</th>
<th>Upper resource in SDMX-RDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Property</td>
<td></td>
</tr>
<tr>
<td>Place of Birth</td>
<td>sdmx-dimension:visArea</td>
</tr>
<tr>
<td>Place of Residence</td>
<td>sdmx-dimension:refArea</td>
</tr>
<tr>
<td>Code Class (Range of Dimension)</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>sdmx-code:Area</td>
</tr>
<tr>
<td>Country</td>
<td>(not defined)</td>
</tr>
<tr>
<td>Domestic Area</td>
<td>(not defined)</td>
</tr>
<tr>
<td>River Basin</td>
<td>(not defined)</td>
</tr>
</tbody>
</table>

(sdmx-dimension:visArea has been removed in the current version of SDMX-RDF.)
Dimension Description in QB

Upper

- `sdmx-dimension:refArea` (upper: abstract DimensionProperty)

Local

Data Structure Definition

- `eg:refArea` (local: DimensionProperty)
 - `rdfs:subPropertyOf` qb:dimension
 - `rdfs:range` qb:codeList

Dimension Property

- `eg:UnitaryAuthority` (local: CodeClass)
 - `rdfs:subClassOf` Code Class
 - `rdf:type` `eg:UnitaryAuthority`

Code Class

- `sdmx-code:Area` (upper: AbstractCodeClass)
 - `rdfs:subClassOf` Code Class

Code List

- `eg:areaCodeList` (local: codeList)
 - `rdf:type` `eg:areaCodeList`
 - `skos:hasTopConcept` | qb:hierarchyRoot

Code

- `eg:cardiff_00pt` (local: code)
 - `rdf:type` `eg:cardiff_00pt`
Anti-Patterns

• Two Anti-Patterns prevent describing schema-level links properly.
 — Direct use of an abstract upper resource
 — Direct use of an external code class
Anti-Pattern: Direct Use of an Upper Resource

Upper

- `sdmx-dimension:refArea`
 - `(upper: abstract DimensionProperty)`

Local

Data Structure Definition

- `sdmx-code:Area`
 - `(upper: AbstractCodeClass)`

Dimension Property

- `rdfs:subClassOf`
- `qb:codeList`
- `rdfs:range`

Code Class

- `eg:UnitaryAuthority`
 - `(local:CodeClass)`

Code List

- `eg:areaCodeList`
 - `(local:codeList)`

Code

- `skos:hasTopConcept`
 - `| qb:hierarchyRoot`
- `eg:cardiff_00pt`
 - `(local:code)`

2013/10/22
The Pattern for Using a Local Code Class

Upper
- sdmx-dimension:refArea (upper: abstract DimensionProperty)

Local
- Data Structure Definition
 - qb:dimension
 - rdfs:range
 - eg:refArea (local: dimensionProperty)
- Code Class
 - eg:UnitaryAuthority (local: CodeClass)
- Code List
 - eg:areaCodeList (local: codeList)
- Code
 - eg:cardiff_00pt (local: code)

- rdfs:subPropertyOf
 - eg:refArea (local: dimensionProperty)
 - qb:codeList
 - sdmx-code:Area (upper: AbstractCodeClass)
 - rdfs:subClassOf
 - eg:UnitaryAuthority (local: CodeClass)
 - rdf:type
 - eg:refArea (local: dimensionProperty)
 - skos:hasTopConcept | qb:hierarchyRoot
Realization of Dimension Property

Direct Use of an External Code Class
The Pattern for Using an External Code Class

Upper
- sdmx-dimension:refArea
 - (upper: abstract DimensionProperty)

Local
- eg:refArea
 - (local: dimensionProperty)
 - rdfs:subPropertyOf qb:dimension

External
- Dimension Property
- Data Structure Definition
- Code Class
- Code List
- Code

- eg:UnitaryAuthority
 - (local: CodeClassAdapter)
 - rdfs:subClassOf sdmx-code:Area
 - (upper: AbstractCodeClass)
 - rdfs:range qb:codeList
 - qb:hierarchyRoot
 - owl:equivalentClass
 - <http://www.geonames.org/ontology#Feature>
 - (external:CodeClass)

- eg:areaCodeList
 - (local: codeList)
 - rdf:type sdmx-code:Area
 - (upper: AbstractCodeClass)

2013/10/22
Alternate Code Class

When using both local and external code classes, it is difficult to find whether an external code class is employed or not.

We need a schema-level description for an alternate code class.
Using Local and External Code Classes

Local

- **Dimension Property**
 - eg:refArea
 - rdfs:range
 - eg:UnitaryAuthority
 - qb:codeList
 - rdf:type
 - Local

- **Code List**
 - eg:areaCodeList
 - skos:hasTopConcept
 - qb:hierarchyRoot

- **Code**
 - eg:cardiff_00pt
 - skos:exactMatch
 - owl:sameAs

External

- **Data Structure Definition**
 - qb:dimension
 - rdfs:range
 - eg:UnitaryAuthority
 - rdf:type
 - External

- **Code List**
 - eg:unitaryAuthority
 - qb:codeList
 - rdf:type
 - External

- **Code**
 - eg:cardiff_00pt
 - skos:exactMatch
 - owl:sameAs

2013/10/22
Proposal of an additional link (ext:altClass)
From Our Survey

<table>
<thead>
<tr>
<th>Area Dimension</th>
<th>Time Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Use of an Upper Resource</td>
<td>3/12</td>
</tr>
<tr>
<td>Direct Use of an External Code Class</td>
<td>2/12</td>
</tr>
<tr>
<td>Use of Alternate Code Classes</td>
<td>10/12</td>
</tr>
</tbody>
</table>

The counts are DSDs (Data Structure Definitions) found in the endpoints listed at http://www.w3.org/2011/gld/wiki/Data_Cube_Implementations.
Conclusion

• We introduced **dimension patterns** for describing **schema-level links** including **references to upper resources** and **alternate class links**.

• These will extract the QB's power of description to its full extent.

• However, only **a few upper resources** are available now. Therefore, the part of the patterns concerning to upper concepts are **preparatory** for the future.

• We think that it is an urgent task to **enrich upper resources** suitable for statistical data.